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Abstract

We extend the method of moving planes, which is well known in
the Laplacian case, to study symmetry of positive solutions of the

elliptic equation −(−∆)α/2u(x) + F (u(x)) = 0, x ∈ B, u = 0 in

∂B. Essential tools (like Hopf’s boundary lemma) are carried over to

fractional powers of the Laplacian. The radial symmetry of positive

solutions of the above equation is studied in the case of a ball B ⊂ R
d

and a positive non-decreasing function F .

1 Introduction

Let F : R+ → R+ be nondecreasing, not identically constant. Let u : R
d →

R+ be a nonnegative bounded solution of

∆αu + F (u) = 0, x ∈ B1(0), u ≡ 0 in B1(0)
c, (1.1)

i.e., for all x in the unit ball we have

u(x) =

∫ ∞

0

(TsF (u))(x) ds =

∫

B1(0)

Gα(x, y)F (u(y)) dy. (1.2)

Here α ∈ (0, 2), ∆α = −(−∆)(α/2) is the generator of the symmetric α-stable

process (Xt), and Gα(x, y) is the Green’s function for the unit ball of (Xt).
Without loss of generality we assume that u 6≡ 0. Our aim here is to show
that

u is rotationally symmetric about the origin. (1.3)
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Our approach is based on the celebrated method of moving planes, a
device that goes back to Alexandrov [1] and has by now a venerable history

in the study of symmetries of solutions of pde’s, see also [3],[4], [5], [6] and [8].

The idea is as follows: Choose any direction in R
d, wlog the x1-direction, and
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Figure 1: The moving planes method.

show that u is mirror symmmetric with respect to the hyperplane through
the origin with this given direction as a normal vector. In order to achieve
this let us define for λ ∈ (−1, 1)

Tλ := {x ∈ R
d : x1 = λ}, Σλ := {x ∈ R

d : x1 < λ}

and for x ∈ R
d let xλ := (2λ − x1, x2, . . . , xd) be the image under reflection

along Tλ; see Figure 1.

Define the set Λ by

Λ :=

{
λ ∈ (−1, 0) : u(xλ) ≥ u(x) ∀x ∈ Σλ,

∂

∂x1

u(x) > 0 ∀x ∈ Tλ ∩ B1(0)

}
.

(1.4)

Observe that by the minimum principle we have u(xλ) > u(x) for x ∈ Σλ ∩

B1(0) and λ ∈ Λ, i.e., λ ∈ Λ means that reflection along Tλ (strictly) increases
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the value of u. In Section 3 we prove that

sup Λ = 0 (1.5)

so that by continuity u(−x1, x2 . . . , xd) ≥ u(x1, x2 . . . , xd) whenever x1 ≤ 0.
By considering λ > 0 and working in the opposite direction we can then
conclude the reversed inequality and hence obtain the desired symmetry.

2 Some preparatory lemmas

Lemma 2.1 A bounded solution u of (1.2) satisfies u ∈ C(Rd)∩C∞(B1(0)).

Proof Use the explicit form of Green’s kernel.

Lemma 2.2 (Minimum principle) Let D ⊂ R
d be a bounded domain.

Suppose u : R
d → R+ is continuous, ∆αu ≤ 0 on D, and satisfies u ≡ 0

on Dc. Then either u ≡ 0 or u > 0 on D.

Proof Let Dε := {x ∈ D : u(x) > ε}. By continuity Dε is open. Assume

that Dε 6= ∅ for some ε > 0. Let (Xt) be the α-stable process, and τ :=

inf{s : Xs 6∈ D} the hitting time of Dc. Then Mt := u(Xt∧τ ) − u(X0) −∫ t∧τ

0
∆αu(Xs) ds is a Px-martingale for each x ∈ D. Let furthermore τ ′ :=

inf{s : Xs ∈ Dε}. For each x ∈ D we have ExMτ ′ = 0, or

u(x) = Ex [u(Xτ ′∧τ )] + Ex

[∫ τ ′∧τ

0

(−∆αu)(Xs) ds

]

≥ Ex [u(Xτ ′∧τ )] ≥ εPx(τ
′ < τ) > 0

because (Xt) hits any open subset of D with positive probability before
exiting from D. 2

We will have occasion to consider the behaviour of u at the boundary of
the ball. In this respect, the following lemma is helpful:

Lemma 2.3 (Hopf’s α-stable boundary lemma) Let D ⊂ R
d be open,

u : R
d → R+ continuous with u ≡ 0 on Dc, ∆αu ≤ 0 on D. Let x0 ∈ ∂D
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Figure 2: The Hopf’s boundary lemma.

satisfy an interior sphere condition, i.e. there exists a ball Bδ(x1) ⊂ D with

Bδ(x1)∩Dc = {x0}, and let ν be an outward pointing unit vector at x0. Then

∂

∂ν
u(x0) < 0

(in fact, limε↘0(u(x0) − u(x0 − εν))/ε = −∞).

Proof Because of the interior sphere condition at x0 we can find a ball

Bδ(x1) ⊂ D such that Bδ(x1) ∩ Dc = {x0} and also B̃ ⊂ D, where B̃
is the “left half” of a spherical shell around x1 with interior radius δ and
exterior radius δ′ > δ; see Fig. 2. Observe that u > 0 in D by Lemma

2.2, in particular inf B̃ u > 0 because B̃ is compact and u continuous. Let

τ := inf{t : Xt 6∈ Bδ(x1)}. Then

u(x) = Ex

[
u(Xτ ) −

∫ τ

0

(∆αu)(Xt) dt

]
≥ Ex u(Xτ )

for x ∈ Bδ(x1). Take x = x1 − εν with ε > 0 small enough, and denote

by γ the angle between x1 x0 and xx0. Then γ ∈ (−π/2, π/2) because ν
is an outward pointing vector, hence cos γ > 0. The cosine theorem gives

|x − x1|
2 = δ2 + ε2 − 2δε cos γ. Using the explicit form of the Poisson kernel
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for the complement of a ball (see e.g. [2]) we can estimate

u(x) ≥ Ex u(Xτ ) ≥

∫

B̃

P (x, y)u(y) dy

≥

(
inf
B̃

u

)
Cα,d

∫

B̃

(
δ2 − |x − x1|

2

|y − x1|2 − δ2

)α/2

|x − y|−d dy

≥ C
(
δ2 − |x − x1|

2
)α/2

≥ C ′εα/2.

Thus we see that lim supε↘0(u(x0) − u(x0 − εν))/ε = −∞. 2

Lemma 2.4 Let w : R
d → R be continuous, bounded with w ≥ 0 on Σ0,

w(x0) = −w(x). Let x∗ ∈ T0 be such that there exists a δ > 0 with ∆αw ≤ 0

on Bδ(x∗) ∩ Σ0. Then either

w ≡ 0, or w > 0 on Bδ(x∗) ∩ Σ0 and
∂

∂x1

w(x∗) < 0.

Proof Assume w 6≡ 0. Let x ∈ Bδ(x∗)∩Σ0. If w(x) = 0 we would have (see

e.g. [2])

∆αw(x) = cα,dPV

∫

Rd

w(x + y) − 0

|y|d+α
dy > 0

by the non-triviality and symmetry of w in contradiction to the assumption.

To show that the derivative is non-zero choose δ′ > 0 such that

sup
z∈Σ0\Bδ′

(x∗)

w(z) > 0.

Let τ := inf{t : Xt 6∈ Bδ′(x∗)} where (Xt) is the symmetric α-stable process.

Define v(x) := Exw(Xτ ), ṽ(x) := Ex

∫ τ

0
(−∆αw)(Xs) ds. Observe that

∆αv = 0 in Bδ′(x∗) and v = w in R
d \ Bδ′(x∗),

∆αṽ = ∆αw in Bδ′(x∗) and ṽ = 0 in R
d \ Bδ′(x∗).

Uniqueness of the Dirichlet problem for ∆α in Bδ′(x∗) thus gives w = v + ṽ.

We have v(x) =
∫
|y−x∗|>δ′

P (x, y)w(y) dy for x ∈ Bδ′(x∗), where the Poisson
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kernel is given by (see e.g. [2], formula (2.2))

P (x, y) = Cα,d

[
δ′2 − |x − x∗|

2

|y − x∗|2 − δ′2

]α/2

|x − y|−d, x ∈ Bδ′(x∗), y 6∈ Bδ′(x∗).

One checks that ∂
∂x1

P (x∗, y) < 0 for y ∈ Σ0 and ∂
∂x1

P (x∗, y) > 0 for y ∈ −Σ0.

The interchange of integration and differentation is justified because w is
bounded, so we can compute

∂

∂x1

v(x∗) =

∫

|y−x∗|>δ′

∂

∂x1

P (x∗, y)w(y) dy < 0.

Furthermore for x ∈ Bδ′(x∗)

ṽ(x) =

∫

B
δ′

(x∗)

G(x, y)(−∆αw)(y) dy

where the Green kernel for Bδ′(x∗) is given by (see e.g. [2], formula (2.3),

but also the remarks section)

G(x, y) = cα,d(|x − y|)α−d

∫ w
δ′

(x,y)

0

rα/2−1

(r + 1)d/2
dr, (2.6)

where wδ′(x, y) = (δ′2 − |x− x∗|
2)(δ′2 − |y − x∗|

2)/|x− y|2. Inspection shows

that for x, y ∈ Bδ′(x∗) ∩ Σ0 we have G(x, y) ≥ G(x, y0), hence ṽ ≥ 0 in

Bδ′(x∗) ∩ Σ0 and by symmetry ṽ ≤ 0 in Bδ′(x∗) ∩ (−Σ0). We conclude that

(∂/∂x1)ṽ(x∗) ≤ 0 and thus ∂w(x∗)
∂x1

≤ ∂v(x∗)
∂x1

< 0. 2

3 Proof of (1.5)

We proceed in three steps and show that

1. Λ is not empty,

2. Λ is open, more precisely for λ ∈ Λ there exists ε > 0 such that
[λ, λ + ε) ⊂ Λ.
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3. From 1. and 2. we conclude that Λ = (−1, λmax). We finally show that
λmax = 0.

Step 1. Obviously (−1, 0, . . . , 0) is an outward pointing direction for each

x ∈ ∂B1(0) ∩ Σ−1/2. By the boundary lemma and the fact that (∂/∂x1)u is

continuous in B1(0) there is an open neighborhood D of ∂B1(0)∩Σ−1/2 such

that (∂/∂x1)u > 0 on D∩B1(0). Choose ε > 0 so small that Σ−1+ε∩B1(0) ⊂

D. Then −1 + ε/2 ∈ Λ.

Step 2. We argue by contradiction. Assume there was λ∗ ∈ Λ and also a
sequence (λn) ⊂ (−1, 0)\Λ with λn ↘ λ∗. From the definition of Λ, possibly

passing to a suitable subsequence (which we again would denote by (λn)) we
can always arrive at one of the following possibilities:

a) There exists a sequence (xn) ⊂ B1(0), xn ∈ Σλn
, with xn → x∗ ∈ B1(0)

and u(xn) ≥ u(xλn

n ) for all n, or

b) There exists a sequence (xn) ⊂ B1(0), xn ∈ Tλn
, with xn → x∗ ∈ B1(0)

and (∂/∂x1)u(xn) ≤ 0 for all n.

Assume a) was true. We cannot have x∗ ∈ Σλ∗
because u is continuous and

u(xλ∗) > u(x) for x ∈ Σλ∗
by the above remark. Hence x∗ ∈ Tλ∗

∩B1(0). But

then we have (∂/∂x1)u(x∗) = limn→∞(u(xλn

n )−u(xn))/(2d(xn, Tλn
)) ≤ 0. By

Hopf’s boundary lemma, this forces x∗ to be away from ∂B1(0), but then we
obtain a contradiction to λ∗ ∈ Λ.

If b) was true we would again find a point x∗ ∈ Tλ∗
∩B1(0) with ∂

∂x1

u(x∗) ≤

0 and arrive at a contradiction.

Step 3. From the preceding steps we know that Λ = (−1, λmax). If u(xλmax) ≡

u(x) for x ∈ Σλmax
then we have found a symmetry center. As u is continuous,

u = 0 on ∂B1(0) and strictly positive inside B1(0) this can only be true for

λmax = 0. Indeed, if λmax < 0 then by continuity we would have u(x) ≤

u(xλmax) for x ∈ Σλmax
, but with u(x) 6≡ u(xλmax). Define w(x) := u(xλmax)−

u(x). Observe that w is continuous and bounded, non-negative in Σλmax
and

w(xλmax) = −w(x). For x ∈ Σλmax
∩ B1(0) we have

∆αw(x) = (∆α)u(xλmax) − (∆α)u(x) = −
[
F (u(xλmax)) − F (u(x))

]
≤ 0,
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and we infer from Lemma 2.4 that (∂/∂x1)w(x) < 0 for all x ∈ Tλmax
∩B1(0).

In conclusion, λmax < 0 implies λmax ∈ Λ which by Step 2 forces sup Λ >
λmax. This is a contradiction.
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